Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Bromo-1-(3-nitrophenyl)ethanone

Jerry P. Jasinski, ${ }^{\text {a* }}$ Ray J. Butcher, ${ }^{\text {b }}$ A. S. Praveen, ${ }^{\text {c }}$
H. S. Yathirajan ${ }^{\text {c }}$ and B. Narayana ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ${ }^{\mathbf{b}}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ${ }^{\text {c }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ${ }^{\mathbf{d}}$ Department of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
Correspondence e-mail: jjasinski@keene.edu

Received 23 November 2010; accepted 26 November 2010

Key indicators: single-crystal X-ray study; $T=123 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$; R factor $=0.090 ; w R$ factor $=0.248$; data-to-parameter ratio $=13.7$.

In the title compound, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{3}$, there are two molecules, A and B, in the asymmetric unit. The nitro and ethanone groups lie close to the plane of the benzene ring and the bromine atom is twisted slightly: the dihedral angles between the mean planes of the nitro and ethanone groups and the benzene ring are $4.6(4)(A)$ and $2.8(3)(B)$, and $0.8(8)(A)$ and $5.5(8)^{\circ}(B)$, respectively. An extensive array of weak C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, $\pi-\pi$ ring stacking [centroid-centroid distances $=3.710(5)$ and $3.677(5) \AA$] and short non-hydrogen $\mathrm{Br} \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{Br}$ intermolecular interactions [3.16 (6)and $3.06(8) \AA$] contribute to the crystal stability, forming a supermolecular three-dimensional network structure along 110. These interactions give rise to a variety of cyclic graph-set motifs and form interconnected sheets in the three-dimensional structure.

Related literature

For the use of α-haloketones in the synthesis of pharmaceuticals, see: Erian et al. (2003). For related structures, see: Gupta \& Prasad (1971); Sim (1986); Sutherland \& Hoy (1968, 1969); Sutherland et al. (1974); Yathirajan et al. (2007); Young et al. (1968). For cyclic graph-set motifs, see: Etter (1990). For reference bond-length data, see: Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{3}$
$\gamma=78.681(7)^{\circ}$
$M_{r}=244.05$
Triclinic, $P \overline{1}$
$a=8.8259$ (7) \AA
$b=8.8651$ (8) \AA
$=843.76$ (12) \AA
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$\mu=6.45 \mathrm{~mm}^{-1}$
$c=11.6775$ (8) \AA
$T=123 \mathrm{~K}$
$\alpha=74.691$ (7) ${ }^{\circ}$
$0.75 \times 0.62 \times 0.19 \mathrm{~mm}$
$\beta=75.174(7)^{\circ}$

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.066, T_{\text {max }}=0.389$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.090 \quad 235$ parameters
$w R\left(F^{2}\right)=0.248$
$S=1.12$
3215 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=2.39 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.83$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 A-\mathrm{H} 4 A A \cdots \mathrm{O} 1 B^{\mathrm{i}}$	0.95	2.49	$3.314(10)$	145
C5 $A-\mathrm{H} 5 A A \cdots \mathrm{Br} 2^{\mathrm{ii}}$	0.95	3.04	$3.849(8)$	144
C5 $A-\mathrm{H} 5 A A \cdots \mathrm{O} 2 B^{\mathrm{i}}$	0.95	2.55	$3.409(11)$	150
C6 $A-\mathrm{H} 6 A A \cdots \mathrm{O} 3 B^{\mathrm{ii}}$	0.95	2.38	$3.320(10)$	171
$\mathrm{C} 4 B-\mathrm{H} 4 B A \cdots \mathrm{O} 1 A^{\text {iii }}$	0.95	2.56	$3.420(9)$	150
C6 $B-\mathrm{H} 6 B A \cdots \mathrm{O} A$	0.95	2.35	$3.278(10)$	165

Symmetry codes: (i) $x-1, y+1, z-1$; (ii) $x-1, y+1, z$; (iii) $x, y, z+1$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

ASP thanks the University of Mysore (UOM) for research facilities and HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5067).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19

Erian, A. W., Sherif, S. M. \& Gaber, H. M. (2003). Molecules, 8, 793-865.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Gupta, M. P. \& Prasad, S. M. (1971). Acta Cryst. B27, 1649-1653.
Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sim, G. A. (1986). Acta Cryst. C42, 1411-1413.
Sutherland, H. H., Hogg, J. H. C. \& Williams, D. J. (1974). Acta Cryst. B30, 1562-1565.

organic compounds

Sutherland, H. H. \& Hoy, T. G. (1968). Acta Cryst. B24, 1207-1213. Sutherland, H. H. \& Hoy, T. G. (1969). Acta Cryst. B25, 2385-2391.

Yathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. \& Bolte, M. (2007). Acta Cryst. E63, o1334-o1335.
Young, D. W., Tollin, P. \& Sutherland, H. H. (1968). Acta Cryst. B24, 161-167.

supplementary materials

2-Bromo-1-(3-nitrophenyl)ethanone

J. P. Jasinski, R. J. Butcher, A. S. Praveen, H. S. Yathirajan and B. Narayana

Comment

α-Haloketones have been attracting increasing attention in view of their high reactivity as building blocks for the preparation of compounds of various classes due to their selective transformations with different reagents. The α-haloketones can be particularly promising synthons in combinatorial synthesis of functionalized carbo- and heterocyclic compounds used in the design of novel highly effective pharmaceuticals with a broad spectrum of bioresponses (Erian et al., 2003). Crystal structures of some acetyl biphenyl derivatives viz., 4-acetyl-2'-fluorobiphenyl (Young et al., 1968), 4-acetyl-2'-chlorobiphenyl (Sutherland \& Hoy, 1968), 4-acetyl-3'-bromobiphenyl (Sutherland \& Hoy, 1969), 4-acetyl-2'-nitrobiphenyl (Sutherland et al., 1974), α-bromoacetophenone (Gupta \& Prasad, 1971), 2-Bromo-4'-phenylacetophenone (Sim, 1986) and methyl 4-(bromomethyl)benzoate (Yathirajan et al.2007) have been reported. In view of the importance of the α-haloketones, the title compound, (I), has been prepared and its crystal structure is reported.

In the title compound, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{3}$, two molecules crystallize in the asymmetric unit (Fig. 2). The nitro and ethanone groups are planar with the benzene ring and the bromine atom is twisted slightly (Torsion angles $\mathrm{C} 1 \mathrm{~A} / \mathrm{C} 7 \mathrm{~A} / \mathrm{C} 8 \mathrm{~A} / \mathrm{Br} 1=$ $-177.5(5)^{\circ}$ and $\mathrm{C} 1 \mathrm{~B} / \mathrm{C} 7 \mathrm{~B} / \mathrm{C} 8 \mathrm{~B} / \mathrm{Br} 2=168.6(5)^{\circ}$. Bond distances and angles are in normal ranges (Allen et al., 1987). An extensive array of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (Table 1), $\pi-\pi$ ring stacking (Table 2) and short non-hydrogen, $\mathrm{Br} \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{Br}$, intermolecular interactions (Table 3) contribute to crystal stability forming a supermolecular 3dimensional network structure along 110 (Fig. 3). These interactions give rise to a variety of cyclic graph-set motifs ($\mathrm{R}_{3}{ }^{1}(3)$, $\left.R_{2}{ }^{2}(7), R_{2}{ }^{2}(8), R_{3}{ }^{3}(12), R_{3}{ }^{3}(18)\right)$, Fig. 3, (Etter, 1990) and form interconnected sheets in the three-dimensional structure.

Experimental

To a stirred solution of 1-(3-nitrophenyl)ethanone ($1 \mathrm{~g}, 6.05 \mathrm{mmol}$) in chloroform (10 ml), bromine ($0.97 \mathrm{~g}, 6.05 \mathrm{mmol}$) was added at $0-5^{\circ} \mathrm{C}$ (Fig. 1). The reaction mixture was stirred at room temperature for 2 h , poured into ice cold water and layers were separated. The organic layer was washed with water ($1 \times 10 \mathrm{ml}$) , 10% aq.sodium bicarbonate solution (1×10 $\mathrm{ml})$ and brine ($1 \times 10 \mathrm{ml}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by column chromatography in silca gel ($230-400$ mesh) using $0-10 \%$ petroleum ether and ethyl acetate as the elutant. Single crystals were grown from THF by the slow evaporation method with a yield of 96% (m.p.365-367 K).

Refinement

All of the H atoms were placed in their calculated positions and refined using the riding model with Atom- H lengths of $0.95 \AA(\mathrm{CH})$ or $0.99 \AA\left(\mathrm{CH}_{2}\right)$. Isotropic displacement parameters for these atoms were set to $1.19-1.22(\mathrm{CH})$ or 1.18-1.20 $\left(\mathrm{CH}_{2}\right)$ times $U_{\text {eq }}$ of the parent atom.

supplementary materials

Figures

Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds between two molecules in the asymmetric unit.

Fig. 2. Packing diagram of the title compound viewed down the a axis. Dashed lines indicate weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and short non-hydrogen, $\mathrm{Br} \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{Br}$, intermolecular interactions creating a 3-D supramolecular structure along 110.

Fig. 3. A planar sheet of $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{3}$ molecules connected by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and short non-hydrogen, $\mathrm{Br} \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{Br}$ intermolecular interactions. These patterns are shown by cyclic graph-set motif analysis $\left(R_{3}{ }^{1}(3), R_{2}{ }^{2}(7), R_{2}{ }^{2}(8), R_{3}{ }^{3}(12)\right.$, $R_{3}{ }^{3}(18)$) in an extended 2-dimensional array.

2-Bromo-1-(3-nitrophenyl)ethanone

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{3}$

$Z=4$
$M_{r}=244.05$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=8.8259$ (7) \AA
$b=8.8651$ (8) \AA
$c=11.6775(8) \AA$
$\alpha=74.691$ (7) ${ }^{\circ}$
$\beta=75.174(7)^{\circ}$
$\gamma=78.681(7)^{\circ}$
$V=843.76(12) \AA^{3}$
$T=123 \mathrm{~K}$
$F(000)=480$
$D_{\mathrm{x}}=1.921 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 4487 reflections
$\theta=5.2-74.4^{\circ}$
$\mu=6.45 \mathrm{~mm}^{-1}$

Plate, colorless
$0.75 \times 0.62 \times 0.19 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer
Radiation source: Enhance (Cu) X-ray Source graphite
Detector resolution: 10.5081 pixels mm^{-1}
ω scans
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.066, T_{\text {max }}=0.389$
4708 measured reflections

3215 independent reflections
3023 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=74.5^{\circ}, \theta_{\text {min }}=5.2^{\circ}$
$h=-10 \rightarrow 10$
$k=-10 \rightarrow 11$
$l=-10 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.090$
$w R\left(F^{2}\right)=0.248$
$S=1.12$
3215 reflections
235 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1498 P)^{2}+8.1184 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=2.39 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.83 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$0.22668(10)$	$0.51160(10)$	$0.93394(7)$	$0.0303(3)$
Br2	$0.72920(10)$	$-0.00313(10)$	$0.49047(7)$	$0.0301(3)$
O1A	$0.4973(7)$	$0.2908(7)$	$0.3052(5)$	$0.0323(13)$
O2A	$0.3515(9)$	$0.4156(10)$	$0.1781(6)$	$0.0471(17)$
O3A	$0.3683(8)$	$0.3750(8)$	$0.7146(5)$	$0.0341(14)$
O1B	$0.9660(7)$	$-0.2309(7)$	$1.1190(6)$	$0.0343(13)$
O2B	$0.8390(10)$	$-0.0778(11)$	$1.2376(7)$	$0.056(2)$
O3B	$0.8567(9)$	$-0.1476(9)$	$0.7169(6)$	$0.0470(18)$
N1A	$0.3867(8)$	$0.3869(8)$	$0.2772(6)$	$0.0279(14)$
N1B	$0.8677(8)$	$-0.1185(9)$	$1.1406(6)$	$0.0300(15)$
C1A	$0.2294(9)$	$0.5263(9)$	$0.5648(7)$	$0.0213(14)$
C2A	$0.3214(9)$	$0.4390(9)$	$0.4807(7)$	$0.0230(15)$
H2AA	0.4027	0.3562	0.5020	0.028^{*}
C3A	$0.2895(9)$	$0.4778(9)$	$0.3663(7)$	$0.0234(15)$
C4A	$0.1708(9)$	$0.5973(9)$	$0.3319(7)$	$0.0260(16)$
H4AA	0.1522	0.6209	0.2520	0.031^{*}
C5A	$0.0816(10)$	$0.6799(9)$	$0.4154(8)$	$0.0268(16)$
H5AA	-0.0004	0.7614	0.3936	0.032^{*}

C6A	$0.1098(9)$	$0.6459(9)$	$0.5319(7)$	$0.0250(15)$
H6AA	0.0474	0.7044	0.5892	0.030^{*}
C7A	$0.2640(9)$	$0.4810(9)$	$0.6892(7)$	$0.0231(15)$
C8A	$0.1639(10)$	$0.5758(9)$	$0.7794(7)$	$0.0262(15)$
H8AA	0.0515	0.5626	0.7923	0.031^{*}
H8AB	0.1733	0.6891	0.7451	0.031^{*}
C1B	$0.7227(9)$	$0.0124(9)$	$0.8533(7)$	$0.0210(14)$
C2B	$0.8084(9)$	$-0.0752(9)$	$0.9417(7)$	$0.0221(14)$
H2BA	0.8829	-0.1653	0.9282	0.027^{*}
C3B	$0.7801(9)$	$-0.0256(9)$	$1.0474(7)$	$0.0239(15)$
C4B	$0.6745(9)$	$0.1066(9)$	$1.0720(7)$	$0.0258(16)$
H4BA	0.6607	0.1374	1.1464	0.031^{*}
C5B	$0.5909(10)$	$0.1913(9)$	$0.9858(8)$	$0.0272(16)$
H5BA	0.5175	0.2816	1.0005	0.033^{*}
C6B	$0.6136(9)$	$0.1452(8)$	$0.8766(7)$	$0.0224(15)$
H6BA	0.5548	0.2039	0.8176	0.027^{*}
C7B	$0.7549(9)$	$-0.0401(9)$	$0.7370(7)$	$0.0252(15)$
C8B	$0.6500(9)$	$0.0468(10)$	$0.6461(7)$	$0.0249(15)$
H8BA	0.6431	0.1621	0.6367	0.030^{*}
H8BB	0.5418	0.0182	0.6791	0.030^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0385(5)$	$0.0349(5)$	$0.0186(5)$	$-0.0091(4)$	$-0.0038(3)$	$-0.0072(3)$
Br2	$0.0404(6)$	$0.0338(5)$	$0.0163(5)$	$-0.0076(4)$	$-0.0030(3)$	$-0.0075(3)$
O1A	$0.041(3)$	$0.029(3)$	$0.022(3)$	$0.000(3)$	$0.000(2)$	$-0.008(2)$
O2A	$0.055(4)$	$0.064(5)$	$0.027(3)$	$0.004(3)$	$-0.015(3)$	$-0.022(3)$
O3A	$0.040(3)$	$0.037(3)$	$0.022(3)$	$0.007(3)$	$-0.010(2)$	$-0.007(2)$
O1B	$0.041(3)$	$0.032(3)$	$0.030(3)$	$0.002(3)$	$-0.015(3)$	$-0.006(2)$
O2B	$0.073(5)$	$0.071(5)$	$0.024(3)$	$0.021(4)$	$-0.019(3)$	$-0.025(3)$
O3B	$0.063(4)$	$0.055(4)$	$0.020(3)$	$0.018(4)$	$-0.014(3)$	$-0.019(3)$
N1A	$0.032(3)$	$0.031(3)$	$0.019(3)$	$-0.010(3)$	$0.005(3)$	$-0.008(3)$
N1B	$0.034(4)$	$0.038(4)$	$0.018(3)$	$-0.008(3)$	$-0.006(3)$	$-0.003(3)$
C1A	$0.023(3)$	$0.024(3)$	$0.018(4)$	$-0.009(3)$	$-0.002(3)$	$-0.004(3)$
C2A	$0.025(4)$	$0.023(4)$	$0.018(4)$	$-0.007(3)$	$0.002(3)$	$-0.003(3)$
C3A	$0.025(4)$	$0.026(4)$	$0.018(4)$	$-0.011(3)$	$0.002(3)$	$-0.005(3)$
C4A	$0.031(4)$	$0.024(4)$	$0.020(4)$	$-0.012(3)$	$-0.004(3)$	$0.003(3)$
C5A	$0.031(4)$	$0.021(4)$	$0.027(4)$	$-0.006(3)$	$-0.010(3)$	$0.002(3)$
C6A	$0.027(4)$	$0.025(4)$	$0.023(4)$	$-0.008(3)$	$-0.004(3)$	$-0.003(3)$
C7A	$0.028(4)$	$0.019(3)$	$0.021(4)$	$-0.007(3)$	$-0.005(3)$	$-0.002(3)$
C8A	$0.035(4)$	$0.026(4)$	$0.018(4)$	$0.001(3)$	$-0.008(3)$	$-0.006(3)$
C1B	$0.025(3)$	$0.021(3)$	$0.016(3)$	$-0.004(3)$	$-0.002(3)$	$-0.004(3)$
C2B	$0.023(3)$	$0.024(4)$	$0.017(3)$	$-0.006(3)$	$0.000(3)$	$-0.003(3)$
C3B	$0.025(4)$	$0.027(4)$	$0.017(4)$	$-0.006(3)$	$-0.002(3)$	$-0.001(3)$
C4B	$0.033(4)$	$0.028(4)$	$0.015(3)$	$-0.012(3)$	$0.005(3)$	$-0.007(3)$
C5B	$0.028(4)$	$0.025(4)$	$0.025(4)$	$-0.006(3)$	$0.004(3)$	$-0.008(3)$
C6B	$0.027(4)$	$0.018(3)$	$0.018(3)$	$-0.003(3)$	$-0.001(3)$	$0.001(3)$

sup-4

C7B	$0.025(4)$
C8B	$0.031(4)$
Geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$	

Br1-C8A	1.932 (8)
Br2-C8B	1.908 (7)
O1A-N1A	1.215 (9)
O2A-N1A	1.224 (10)
O3A-C7A	1.213 (10)
O1B-N1B	1.221 (10)
O2B-N1B	1.229 (10)
O3B-C7B	1.202 (10)
N1A-C3A	1.477 (10)
N1B-C3B	1.472 (10)
C1A-C6A	1.392 (11)
C1A-C2A	1.403 (11)
C1A-C7A	1.496 (11)
C2A-C3A	1.377 (11)
C2A-H2AA	0.9500
C3A-C4A	1.392 (12)
C4A-C5A	1.365 (12)
C4A-H4AA	0.9500
C5A-C6A	1.390 (12)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	124.0 (7)
O1A-N1A-C3A	118.7 (7)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	117.3 (7)
$\mathrm{O} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}$	122.5 (7)
O1B-N1B-C3B	119.5 (7)
O2B-N1B-C3B	118.0 (7)
$\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	120.2 (7)
C6A-C1A-C7A	123.0 (7)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	116.8 (7)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	117.5 (7)
C3A-C2A-H2AA	121.3
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	121.3
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	123.0 (7)
C2A-C3A-N1A	117.7 (7)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	119.3 (7)
C5A-C4A-C3A	118.6 (8)
C5A-C4A-H4AA	120.7
C3A-C4A-H4AA	120.7
C4A-C5A-C6A	120.6 (8)
C4A-C5A-H5AA	119.7
C6A-C5A-H5AA	119.7
C5A-C6A-C1A	120.1 (8)
C5A-C6A-H6AA	120.0
C1A-C6A-H6AA	120.0
O3A-C7A-C1A	121.0 (7)

C5A-H5AA	0.9500
C6A-H6AA	0.9500
C7A-C8A	1.515 (11)
C8A-H8AA	0.9900
C8A-H8AB	0.9900
C1B-C6B	1.406 (10)
C1B-C2B	1.410 (11)
C1B-C7B	1.492 (11)
C2B-C3B	1.366 (11)
C2B-H2BA	0.9500
C3B-C4B	1.392 (11)
C4B-C5B	1.373 (12)
C4B-H4BA	0.9500
C5B-C6B	1.394 (12)
C5B-H5BA	0.9500
C6B-H6BA	0.9500
C7B-C8B	1.539 (11)
C8B-H8BA	0.9900
C8B-H8BB	0.9900
C7A-C8A-H8AB	109.2
Br1-C8A-H8AB	109.2
H8AA-C8A-H8AB	107.9
C6B-C1B-C2B	119.5 (7)
C6B-C1B-C7B	122.9 (7)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	117.6 (7)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	117.4 (7)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA}$	121.3
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA}$	121.3
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	124.2 (8)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	117.5 (7)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	118.3 (7)
C5B-C4B-C3B	118.2 (7)
C5B-C4B-H4BA	120.9
C3B-C4B-H4BA	120.9
C4B-C5B-C6B	120.2 (7)
C4B-C5B-H5BA	119.9
C6B-C5B-H5BA	119.9
C5B-C6B-C1B	120.5 (7)
C5B-C6B-H6BA	119.7
C1B-C6B-H6BA	119.7
O3B-C7B-C1B	121.0 (7)
O3B-C7B-C8B	121.9 (7)
C1B-C7B-C8B	117.1 (6)
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{Br} 2$	112.4 (5)

O3A-C7A-C8A	$122.6(7)$
C1A-C7A-C8A	$116.4(7)$
C7A-C8A-Br1	$112.2(5)$
C7A-C8A-H8AA	109.2
Br1-C8A-H8AA	109.2
C6A-C1A-C2A-C3A	$0.7(11)$
C7A-C1A-C2A-C3A	$179.1(6)$
C1A-C2A-C3A-C4A	$-0.5(11)$
C1A-C2A-C3A-N1A	$179.7(6)$
O1A-N1A-C3A-C2A	$-5.5(10)$
O2A-N1A-C3A-C2A	$175.7(7)$
O1A-N1A-C3A-C4A	$174.7(7)$
O2A-N1A-C3A-C4A	$-4.1(11)$
C2A-C3A-C4A-C5A	$-0.1(11)$
N1A-C3A-C4A-C5A	$179.8(7)$
C3A-C4A-C5A-C6A	$0.5(11)$
C4A-C5A-C6A-C1A	$-0.3(12)$
C2A-C1A-C6A-C5A	$-0.3(11)$
C7A-C1A-C6A-C5A	$-178.6(7)$
C6A-C1A-C7A-O3A	$179.3(7)$
C2A-C1A-C7A-O3A	$0.9(11)$
C6A-C1A-C7A-C8A	$-1.5(11)$
C2A-C1A-C7A-C8A	$-179.9(7)$
O3A-C7A-C8A-Br1	$1.7(10)$
C1A-C7A-C8A-Br1	$-177.5(5)$

C7B-C8B-H8BA	109.1
Br2-C8B-H8BA	109.1
C7B-C8B-H8BB	109.1
Br2-C8B-H8BB	109.1
H8BA-C8B-H8BB	107.8
C6B-C1B-C2B-C3B	$0.1(11)$
C7B-C1B-C2B-C3B	$179.2(7)$
C1B-C2B-C3B-C4B	$-1.1(11)$
C1B-C2B-C3B-N1B	$179.1(6)$
O1B-N1B-C3B-C2B	$3.0(11)$
O2B-N1B-C3B-C2B	$-177.6(8)$
O1B-N1B-C3B-C4B	$-176.8(7)$
O2B-N1B-C3B-C4B	$2.6(11)$
C2B-C3B-C4B-C5B	$1.3(12)$
N1B-C3B-C4B-C5B	$-178.9(7)$
C3B-C4B-C5B-C6B	$-0.5(11)$
C4B-C5B-C6B-C1B	$-0.4(12)$
C2B-C1B-C6B-C5B	$0.6(11)$
C7B-C1B-C6B-C5B	$-178.4(7)$
C6B-C1B-C7B-O3B	$174.9(8)$
C2B-C1B-C7B-O3B	$-4.2(12)$
C6B-C1B-C7B-C8B	$-6.5(11)$
C2B-C1B-C7B-C8B	$174.5(6)$
O3B-C7B-C8B-Br2	$-12.8(10)$
C1B-C7B-C8B-Br2	$168.6(5)$

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots \mathrm{A}$	D - H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C4A-H4AA $\cdots \mathrm{OlB}^{\text {i }}$	0.95	2.49	3.314 (10)	145
C5A-H5AA $\cdots \mathrm{Br}^{\text {ii }}$	0.95	3.04	3.849 (8)	144
C5A-H5AA $\cdots \mathrm{O}^{\text {B }}$	0.95	2.55	3.409 (11)	150
C6A-H6AA \cdots O3B ${ }^{\text {ii }}$	0.95	2.38	3.320 (10)	171
C4B-H4BA \cdots O1A ${ }^{\text {iii }}$	0.95	2.56	3.420 (9)	150
C6B-H6BA \cdots O3A	0.95	2.35	3.278 (10)	165

Symmetry codes: (i) $x-1, y+1, z-1$; (ii) $x-1, y+1, z$; (iii) $x, y, z+1$.

Table 2
$C g \cdots C g \pi$ stacking interactions (A)
Cg 1 and Cg 2 are the centroids of rings $\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$ and $\mathrm{Cg} 1 \mathrm{~B}-\mathrm{Cg} 6 \mathrm{~B}$

$C g I \cdots C g J$	$C g \cdots C g$	CgI Perp	CgJ Perp	Slippage
$\mathrm{Cg} 1 \cdots \mathrm{Cg} 1^{\mathrm{i}}$	$3.710(5)$	$-3.357(3)$	$-3.357(3)$	$1.58(2)$
$\mathrm{Cg} 2 \cdots \mathrm{Cg} 2^{\mathrm{ii}}$	$3.677(5)$	$-3.418(3)$	$-3.418(3)$	$1.35(5)$
Symmetry codes: (i) -x, 1-y, 1-z; (ii) $1-\mathrm{x},-\mathrm{y}, 2-\mathrm{z}$.				

Table 3

supplementary materials

Short non-hydrogen intermolecular interactions (A).

Atom I \cdots Atom J	d(I-J)	Del
$\mathrm{Br} 1^{\mathrm{i}} \ldots \mathrm{O} 2 \mathrm{~A}^{\mathrm{ii}}$	3.16 (6)	-0.20
$\mathrm{O} 2 \mathrm{~A}^{\mathrm{i}} \cdots \mathrm{Br} 1^{\text {iii }}$	3.16 (6)	-0.20
$\mathrm{Br} 2^{\mathrm{i}} \cdots \mathrm{O}^{\text {B }}{ }^{\text {iii }}$	3.06 (8)	-0.30
O2B ${ }^{\text {i }} \cdots \mathrm{Br} 2^{\text {ii }}$	3.06 (8)	-0.30

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

